322 research outputs found

    Two-Layer Feature Reduction for Sparse-Group Lasso via Decomposition of Convex Sets

    Full text link
    Sparse-Group Lasso (SGL) has been shown to be a powerful regression technique for simultaneously discovering group and within-group sparse patterns by using a combination of the β„“1\ell_1 and β„“2\ell_2 norms. However, in large-scale applications, the complexity of the regularizers entails great computational challenges. In this paper, we propose a novel Two-Layer Feature REduction method (TLFre) for SGL via a decomposition of its dual feasible set. The two-layer reduction is able to quickly identify the inactive groups and the inactive features, respectively, which are guaranteed to be absent from the sparse representation and can be removed from the optimization. Existing feature reduction methods are only applicable for sparse models with one sparsity-inducing regularizer. To our best knowledge, TLFre is the first one that is capable of dealing with multiple sparsity-inducing regularizers. Moreover, TLFre has a very low computational cost and can be integrated with any existing solvers. We also develop a screening method---called DPC (DecomPosition of Convex set)---for the nonnegative Lasso problem. Experiments on both synthetic and real data sets show that TLFre and DPC improve the efficiency of SGL and nonnegative Lasso by several orders of magnitude

    Forward-Backward Greedy Algorithms for General Convex Smooth Functions over A Cardinality Constraint

    Full text link
    We consider forward-backward greedy algorithms for solving sparse feature selection problems with general convex smooth functions. A state-of-the-art greedy method, the Forward-Backward greedy algorithm (FoBa-obj) requires to solve a large number of optimization problems, thus it is not scalable for large-size problems. The FoBa-gdt algorithm, which uses the gradient information for feature selection at each forward iteration, significantly improves the efficiency of FoBa-obj. In this paper, we systematically analyze the theoretical properties of both forward-backward greedy algorithms. Our main contributions are: 1) We derive better theoretical bounds than existing analyses regarding FoBa-obj for general smooth convex functions; 2) We show that FoBa-gdt achieves the same theoretical performance as FoBa-obj under the same condition: restricted strong convexity condition. Our new bounds are consistent with the bounds of a special case (least squares) and fills a previously existing theoretical gap for general convex smooth functions; 3) We show that the restricted strong convexity condition is satisfied if the number of independent samples is more than kΛ‰log⁑d\bar{k}\log d where kΛ‰\bar{k} is the sparsity number and dd is the dimension of the variable; 4) We apply FoBa-gdt (with the conditional random field objective) to the sensor selection problem for human indoor activity recognition and our results show that FoBa-gdt outperforms other methods (including the ones based on forward greedy selection and L1-regularization)
    • …
    corecore